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Motivation
4D Magnetic Particle Imaging (MPI) reconstructions with high temporal re-

solution are of high relevance for diagnostic purposes.

Dynamic concentrations

• Tracer is located in specific organs or vessels

⇒ High gradients or discontinuities at organ boundaries

⇒ c(r, t) is discontinuous in space

• The tracer does not appear instantaneously. It accumulates, is dissipated

or flows through a volume covered by one voxel

⇒ c(r, t) is continuously differentiable in time

Multi-patch data

a) Multi-patch data is a concatenation of the measurements for each patch

and each frame.
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Fig. 1: The measured voltage is a concatenation of the measurements for each patch

and each frame.

In between each scanning period of a patch there is at least a time span of

Tp(P − 1) in which the other patches are scanned (Tp = scanning time for

one patch, P = number of patches).

⇒ Difficult to use similarity of subsequent frames for regularization.

b) Patches of the same frame are scanned at different time points which can

cause artifacts. An extreme example is shown in the figure below.
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Fig. 2: Reconstruction of a 2-patch phantom with linear motion shows

artefacts since the patches are scanned at different time points.

Methods
Dynamic Forward Model

The MPI forward problem in time can be written as

u(t) =
d

dt

∫
Ω
c(r, t)m̄(r, t)d3r

which is a simplified version of the forward problem in [2] with c additionally

depending on time.

Assumptions:

• Perfect filter removes signal by the excitation field

• Permeability constant can be neglected

• Coil sensitivity is constant and therefore can be neglected [2]

Dynamic tracer concentrations⇒ c is time-dependent and its time derivative

is nonzero:

u(t) =

∫
Ω

dm̄

dt
(r, t)︸ ︷︷ ︸
S1

c(r, t) + m̄(r, t)︸ ︷︷ ︸
S2

dc

dt
(r, t)d3r

=

∫
Ω
S1(r, t)c(r, t) + S2(r, t)

dc

dt
(r, t)d3r

Consequences:

• New system matrix model / 2 system matrices

• Convolution in frequency domain ⇒ If possible, prefer reconstruction in

time domain

Concentration Model

Based on [1] the concentration is modeled by cubic B-splines in time for each

voxel

cp(r, t) =
∑

m∈Mp

bm(r)Bm(t),
dcp

dt
(r, t) =

∑
m∈Mp

bm(r)
dBm

dt
(t).

p is the patch index, bm are the control points and Bm are cubic B-splines.

Minimization Problem

Minimize

L(B) =
∑
p

1

2

∥∥∥∑
r

S1(r, t)cp(r, t) + S2(r, t)
dcp

dt
(r, t)− up(t)

∥∥∥2

2

with respect to the set of all control points B = [bm(r)]r=1...R
m=1...Mp; p=1...P .

Spline Setup
If the knots are chosen accordingly, this approach ensures differentiability in

time, even for the periods without data for certain patches. Discontinuity in

space is still possible as there is a specific set of control points for each voxel.

•M0 uniformly distributed knots are placed in each scanning interval of the

patch.

•Quadruple knots are placed at the beginning and end of the scan time for

each patch to allow discontinuities at these time points.

Example curve for a fixed voxel r: The scan has 2 patches, 3 frames and

M0 = 5. The first and second image show the curves for the respective

patches, their control polygons bm(r),m ∈ Mp and the location of the

knots. The third and fourth image show the respective spline basis functions

Bm(t),m ∈Mp.
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Minimization
As we limit the reconstructed concentrations to those representable as spline

curves this provides an implicit regularization. Currently there is no other

regularization applied. It can be minimized e.g. with a gradient descent.

Depending on which further regularization terms are added more sophistica-

ted algorithms might be required, e.g. a primal-dual algorithm.

Results
The algorithm was tested with simulated measurements from computational

phantoms. This enables reconstructions in time domain without any filtering

or post-processing steps e.g. frequency selection, spectral leakage correction.

The phantom setup and behavior in time can be seen in the two figures be-

low. There is a box within both patches. The concentration follows a spline

curve such that the movement of the box is a smoothed linear motion in

x-direction.

The phantom has 2 patches, with 16×4×1 voxels. The simulation measures

4 frames and 408 time points within each cycle. There is no patch overlap,

no overscanning and each patch is scanned once per frame.

The minimization problem was solved with 50 gradient descent steps and

M0 = 5. X- and y-channel reconstructions were averaged to obtain the fol-

lowing reconstructions.
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Fig. 3: Four frames of the phantom (left) and the xy-average reconstruction (right) at

the same time points. The white dashed box indicates the outlines of the current

position of the object in the phantom.
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Fig. 4: Time development over the full scanning time for each voxel of each patch for

the phantom (above) and the xy-average reconstruction (below). Each curve represents

one voxel.

Discussion
Advantages:

• Reconstructions with infinitely high temporal resolution

•Data approximation during scanning time of other patches

• Implicit regularization

• Potential reduction of artifacts

Future work:

• Reconstruction of hybrid data: Simulate measurement with computational phantom and measured

system matrix. Reconstruct with the new matrix model (and concentration model).

• Reconstruction of measured data

• Adding regularization terms e.g sparcity in space, conservation of mass

• Using faster minimization methods
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